et U e

n v ol o I"’Y
v Y Y
(4.20) E{[kzl ckxk} } < [vta + D] lkzl bk|ck| ,

In the case that g 18 symmetric, the quantity o in (4.20) may be replaced by
e e ‘-%
(4.21) ot = |(v-1) B s dl mierenid s BT

k=l §,=1 §,_,=1

REMARKS. (i) For asymptotic applications, the most effective choice of gq
in the use of the preceding result is q = 1, in which case y = 2 and (4.20) takes

the form

v/2
A
4.22) E{s:} < [v!ay + Dv]"/ kzl bkc;J 3

YWhereas the cases corresponding to q > 1 entail a smaller quantity aq in place

of a5 the factor

-4 v/y
(4.23) Y obYle |
P

is larger for these cases than for the case q = 1.

(11) Under related but different conditions, Méricz (1976) establishes, in

i

the proof of his Theorem 1, a result of the form (4.20) for the case that the b, 's

are bounded: bi <€ K <» (all 1i). In the role of uq, Méricz uses

1/q
(4.24) mo=| I o] [BYx, eeex B .
q 18, <oveci <o 1 v
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it is seen that aq S‘mq and hence Corollary 4.4 applies to a larger class of
sequences {Xi} then covered by Méricz' result. Also, Méricz' results are
confined to the case q 2 2. On the other hand, in Méricz' results the factor
(4.23) appears with Yy replaced by p, which, by (4.7b), yields a sharper factor

in the case q 2 2. Note that in this case the most effective choice of q for

asymptotic applications is q = 2. [

THEOREM 4.5. Let X ,e°+,X  satisfy bI = E{XI} <w,1<1i<n, for an even

integer v. Suppose that, for a symmetric function g of %v arguments,

(4.25) IE{Xi °°oxi\)}| < g(iz-i noo,iv_iv_l)bi ao.bi

si-i:
1A s 1 .

1

jor all 1 < 1; <eee< i S n. Let q 2 1 be given. Put

1
i k
(4.26) o = S Shi E Z..° E Q(j see,g k) i
: *an Cov=-1)! 8 8127 e dyyare

kL 3g=D By gl

Define vy by (4.7) and D, by (3.9). Then

n

' % v/y
, 1V v/2 Y Y
(4.27) E [kgl ckkk] } < [“'Bqn + D] kzl bklck];] g

PROOF. First an upper bound on |E{wv}l is obtained. Put di = bilcil' Also,
denote %v by m vwhere conenient. Take the case q > 1. By (3.11), (4.25),

the inequality 2ab < a2 + hz, and H6lder's inequality,




gl o

|[E(W} svt T o] d ool gL~
v

i -ou’i —i
1<i <ecce<i <n 71 b
1 v

1 1471y wit

o g—_y

B , , q
< \)! z 600 o-adzp oo e dfqnoodfq gq(iz-il’.."iv-iv-l)
1sil<-~-<1 Sn 1 151 <°°°<i <n 71 v

:‘"'”‘W‘:—-'«'—*" gy

1
< vt 2 dép ik cos (@] +a] )(a] +af )---(dq +d] )
(k=1 151 <°°°<i s 1104 i teat ity :
1
g Y q . q
* Pt P Ph FYCLLIE N MR
v
n 2 4 VvV q q %
< \)! Z dk 000 2 1 z ceo Z di oaodi X |
k=1 1$1 <--°<i oSh j 3,=3 £ =v-1 i N i
E 1
q q
g o U T Ve W
. v 1
i p v 'rl‘
(4.28) < v! ’p eee J B .
i k'l ,,1 j =3 J =y-1 jl’jZ’ 9j
1
1 where
Ln
(4.29) B = § oo 7 da¥ @l oeedd QY(a,-1, 1,-1,,000,1 -4 ) .
gtae I i 271" T4 T3 e Tv=l
: SEERRREEM 1si <o e<f sn 1y, %y, de
;
As an example of the technique used to place a suitable bound on Bj oo, g ?
1’ m

consider B . The other 2" - 1 terms in (4.29) may be handled in
1,3,5,°°°,v-1

similar fashion. Define




|
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eoo i =i _}}

Jp = {1,051 )): 154 <eee< i <n and 1yp=15p_q = max{i,-1 S Y

gt gy hay
for £ = 1,2,°<+,m, and denote summation over (11,°°°,1v) € JZ by Z(Jt). Then

a2 g9 ... P e RELIC s

m
B 290 e S Z X
BR BT S S L e PR

m n-v+l n-vi3 n-1 §
= z 2 z oo z dg d(jl. ooodg X
£=1 1,21 d=i 424 =1 42 L3 v

= 1"\’) =~ J/,

12=il+1 14=i3+1 iv=i

(il,°:*jiv) e Jp

m
< z Z 000 z d;l. dq °°°d2 X
£=1 1<ij<eee<i<n 71 73 v-1

o et fatae ‘
g ) AR 8 (3ys e dyyore Tpp7igey) ‘
1e719p-1™" 3=t J%v—l-l

n m
q 3 q|” .
(m-l)! X j} Bqn(m-l)! [;21 ;;1 Bqn .
|E{W_}| < v! 4” 2 dq
ig _k-l k=1

It thus follows that

(4.30)
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For the case q = 1, a similar argument without the use of Holder's inequality

leads to (4.30). Note that (4.30) is the same as (4.14), except with Bqn in place
of aqn' The proof is now completed in the same way as the proof of Theorem 4.3
following (4.14). [

REMARK. The case of (4.30) corresponding to v = 4, g(jl,jz) = min{f(jl),f(jz)},

and q = 1 was in effect established by Révész (1969), as may be seen from a careful

scrutiny of the proof of his Theorem MM-3. His method of proof has been utilized.
The following two corollaries of Theorem 4.5 are immediate. The first result

specializes to Conditions Bl and B2. The second result pertains to the case of

en infinite sequence {Xi}.

COROLLARY 4.6. Let X,,e**,X satisfy bI = E{X;} <w, 1<1i<n, for an even

1!
integer v. Suppose that, for a function £(j) and for all 1 < i) <eee< iy <m,

etther

(4.31) 'E{x11°'"xiv}' < min{f(iz-il),f(14-13),°~°,f(iv-iv_1)}bilo°°biv
or

(4.32) |E{X11°'-Xiv}| < f(iz-il)f(i4-i3)°-°f(1v—iv_1)bil°--biv ’

Let q 21 be given. Put

. N I B dv-lq, |9
(4.33) Ban [;%v_l)!kzl gkl (kil
and 1
( ) R 0 e e
(4.34) b~ (15T kzl 321 £7(3) £7 (k)

Define y by (4.7) and Dv by (3.9). Then

0

Y
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v v/y
0 ; 5 en g2 [ e
.35) E Xl 3 v Ben D] ) bklckl i

k=1 k=1

(1) if (4.31) is asswmed and by 8(2) if (4.32) is assumed. 1

with Bqn given by Bqn e

COROLLARY 4.7. Suppose that the assumptions of Theorem 4.5 or Corollary 4.6,

for fixed v, g, £ and q, hold for all n = 1,2,+<- . Let Eq be given by

2 e Ve e e q
(4.36) Bq 4 _(—;Tj—' kil Zl°f° z T g (Jls°°°’J;£v_1’k)
el M T

if (4.25) is assumed, by

i &l ) A N e Sl

50 1 v Av-1 q q
(46.37) S I%;;:TTT-kgl k £ (ki}

if (4.31) is assumed, and by

(4.38) P I S QR 3
I q (5v-1)! %

if (4.32) is assumed. Then

3 s A%
) ot B, + 0,2 T bl |
(4.39) E c < [w! c .
k=1 kxk q v k=1 k' 'k
For q = 1, the version of Corollary 4.7 cor ding to Condition Bl, i.e.;

corresponding to assumption (4.31), has been given by Gapoékin (1972), under the
additional condition that £(°) 1s nonincreasing.

In many typical situations, both (4.31) and (4.32) are satisfied, in which

case the use of both (4.37) and (4.38) arise as options for cunsideration. However,
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the requirements on f(-) for finiteness of Eq are milder in the case of (4.38)
than in the case of (4.37). Namely, finiteness of Zqu(k) P z:k%v-lfq

is required. For example, consider the stochastic process

(4.40) xe) = 2772 - 11,

where £(t) is a Gaussian process with E{&(t)} = O, E{Ez(t)} 1, and
E{E(t)E(t + 1)} = R(t). This physically realizable stochastic process X(°) is
considered by Magness (1954) for quantitative illustration of non-Gaussianity.

Consider the associated discrete-time sequence (Xk}, where Xk = X(k), k = 1,2,

It is readily seen that

(4.41) jafx, £ %, % 3 = 15|R(1,=1 DR, ~15)| ,

R
for all 1 < il <es0g 14, under the assumption that R(T) 1is nounincreasing as
|t] increases. Thus {Xk} satisfies Condition Bl with f(j) = /15 |R(§)],

provided that Z;le(j)l < =, Also, {Xk} satisfies Condition B2 with the same
f(j), provided merely that leR(j)l < o, (Here we have taken q = 1.)

A moment inequality for Sn under Condition C will now be presented.

THEOREM 4.8. Let X ,-*,X  satisfy bI

integer V. Suppose that, for a funetion £(j) and a symmetric function g of

= E{XI} <o, 1<1is<n, for an even
¥v-1 arguments,

(4.42) lE{x11°'°x1v}| < min{f(iz-il),f(iv-iv_l)}g(i3-12,15-ib,°°°,iv-iv_1)bil°'°bi

for all 1 s 1, <eeoc i, <sn. Let q21 be given. Put

1

(k)

v




p—

et S "
(4.43) ‘s = Py i LT
» 851 jp=1 §;=1 3, ;=1 ai’ kv-1 .

Define y by (4.7) and vDV by (3.9). Then

5 v 2 1 v/2 s —v/y
(4.46) g x| ts v IR Xieo ¥ A
L” El £ &k} } ]}v 5qn[k£1 £ (k)] + D;| Lzl bklckl‘J

The proof is similar in technique to that of Theorems 4.3 and 4.4 and so is
omitted. Likewise, the extension to the case of an infinite sequence is clear.
The next moment inequality for Sn will be derived under the product-moment

exchangeable restriction which was discussed in Section 2.

THEOREM 4.9. Let Xj,-*-,X seatisfy b, = E{X;}< », 1 <1 < n, for an even

integer v. Suppose that, for a constant G, o’

9

(4.45) E{xi ek } = G bi cosh

for all 1 < i, <°°:< iv < n. Put

1

(4.46) A

Then

v -v/2 v/2 v/2
@y BT e X | t < Ec |} bici] +D, J bici] ;
k=1 Vol Miyay k=1

PROOF. Since by the definition of wv

n

IE{WV}I < |Gv’n|A ‘




i
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the proof follows that of Theorem 4.3. [

Condition (4.45) would he satisfied by an exchangeable sequence of random
variables. An application of this theorem to rank statistic nrohlems will he
presented in Section 5.

The final two results of this section present moment inequalities in which

v
the upper bound on E{Sn} is a function of the mixine numbers of the sequence

{Yi}.

COROLLARY 4.1n. Let {Xi} be strictly stationary with F{Yj} = N, strongly
mizing, and bounded: lXiI < C, all i. Suppose that & = Z; j¢; < =, vhere {4,} are

the Rosenblatt mixing numbers. Define ", by (3.9). Then, for all n,

n n
4 2 2
(4.4%) Bl L e |t = cttas+ 0,07 T
k=1 = © k=1

The proof follows from Corollarv 4.5 since, under the ahbove assumptions,
{Xi} satisfies Condition Rl, as was noted in Section 2. Corollary 4.10 broadens
Lemma 29.4 of Billingsley (19AR). ’le obtains essentiallv the same hounds, but
assumes a more stringent mixing condition® in particular, his mixin~ numbers {¢¥}
satisfy ¢? < ¢j' Furthermore, his summability condition on the ¢?'s is
w)

@ ok
L 57 <

0o
a stronrer restriction than z] j¢1 < ®,

THEORFM 4.11. Let {X1} be a strictly stationary sequence with W{Yi} =)

and bounded: lXil <C, all i. Let &(1- J) be the mixing numbevs for {(x;}. Put

n I
(4.49) .= 1 1 0 n e 1),
k=1 j=1
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and

n-i3 nEZ nil
(4.50) 6 = min{d(0:9,53,,34)50(0,5,33,,3,),000,3,,9, 30} .
n J[1 3,734 3,704 10204 g idokdyg 1*42773

Then, for all n,

2
C2
Wl

PROOF. By a lemma of Ibragimov (1962), for 11 < 12 < 13 < i4 and with

[

k=

i : 4 2
(4.51) E{[ ) ckxk] } < Ca[96{41n + 6n(Z;ck)/( ?ci)z} +D,] [
1

4 "
lE{X11X12x13x14}l < 16C ¢(11,12) $(1y31,) + g(12—11.13 1,.1,-1,).

Thus

[E(w,}| = 4t [E{ [ -o¢ ] Gy ety BN ik }H

1511<=°°<iASn 1 4 1 4‘

A

4
384C e |e, oone, |6(0,1,-1,)¢(051,-1,) +
) ! i 1, - | 473

1$11<“°'<145n 1

4
96C z %o z lc cocoQ l g(i -1 ’i -1 ,i -i )
151 <o 0<i, <n L, 1, e b i i B |

4 e 4
96c" (4 1 (I ¢ )" + 0 (1] )]

1A

The proof is completed by combining this bound with the bound on E{ZA} as was

done in the proof of Theorems 4.3 and 4.4. ]
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In the next section, Theorem 4.11 will be combined with a result of Blum and
Rosenblatt (1956) to obtain a central theorem for sums of bounded functions of

strongly mixing random variables.

5. Applications of moment inequalities. The first application is concerned

with the question of almost sure convergence of an infinite series Z; ckxv. subject

to mild restrictions on the growth of the constants c¢, and mild dependence

i

restrictions on the random variables {Xi}. A consequence of Kolmogorov's classical

"three series criterion" is that if the Xi's are mutually independent with 0 means

and variances 1 and if the ci's satisfy Z; ci < o, then Zl Cixi converges almost
surely. If the dependence restriction is reduced in strength to orthogonality,

then results due to Rademacher (1922), Mensov (1923), and Tandori (1957) show that
the condition IT ci < » s not strong enough to insure the almost sure convergence
of z: c X Rademacher and Mensov's results placed the condition Z: ci(log 1)2 < @
on the ci's in order to obtain the almost sure convergence of z: Cixi’ where the

Xi's are orthogonal with mean 0 and variance 1. Komlés (1972) obtains the almost

sure convergence of Z under the conditions that z: ci < o, and the X,'s

1% 1
are multiplicative of order v, for an even integer v 2 4, E{Xi} < K < = (all i),
E{Xi} = 0 and Var(Xi) z 1. This result was effectively improved hy Gaposkin (1972),
who introduced a dependence restriction similar to Condition Bl in place of the
multiplicative of order v assumption. A theorem which allows Condition A,
Condition B,or Condition C to replace the multiplicative of order Vv restriction
in Komlés result will now be proved. Gaposkin's result will be obtained as a

corollary to this result. In the proof of the almost sure convergence result,

the following maximal inequality will be used.
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THEOREM 5.1. (Longnecker and Serfling (1976)). Let LOERRAE A be arbitrary

random variables. Suppose that for comstants v > 0 and vy > 1, and for all positive

" x,
3 (5.1) P % Y (2 AP < J\"\’[g(i,j)]Y (@l 1 <4 <3 <n),
: k=i
ﬁ‘ 2 where g satisfies g(i,j) + g(3 + 1, k) < g(i, k). Then for all positive ),
b i i Fy
P (5.2) P{ max z Vk > Ap < Cv A [e(1, n)]Y .
1<i<n|k=1 L

where % % 18 a constant depending on only v and Yy .

F with g(i, j) = K[ % bt
& k=1 k 'k
1 Theorems 4.4, 4.7, and 4.8 in conjunction with Chebyshev's inequality demonstrate

], where K 1s defined by (4.20), (4.39) or (4.44),

that condition (5.1) is satisfied with vy = %v and Y, = ckxk, where the Xk's satisfy

k
either Condition A, Condition B, or Condition C. Thus, for random variables satisfying
any one of the three dependence restrictions Condition A, B, or C. the maximal

inequality of Theorem 5.1 is applicable.

THEOREM 5.2. Let the sequence {xi} satisfy, for any even integer v > 2,
etther Condition A, Condition B, or Condition C, and b, = E{XI} < o (qll 1). Then

the condition 2: bici < o implies the almost sure convergence of z: X -

2 2
k°k ©

converges almost surely by showing that the sequence {Yn} is almost surely Cauchy,

00 n a
PROOF. Assume . b =, With Y = [ ¢ X, it will be shown that 1, o X%

that is, satisfies

P{IYn - le +0asm, n+»} =1,

: . ‘ , . N— .MJI




27
or, equivalently,

(5.3) P maxIYn - Ym > At >0, as m +» », for each A > 0 .
nm

By the remarks following Theorem 5.1, it is seen from (5.2) that

v/2
Co R gl
(5.4) P{ max IYn = sy e y by Sy .
m<n<M k=m

where 8, does not depend on m and M. If M+ in (5.4), then

" v/2

-V 2572

(5.5) Pimax|Y - Y | >Xr <276 [ ] be
nzm k=m

Since z; bici < ®», the right-hand side of (5.5) tends to 0 as m -+ », establishing
(5.3). O

Results similar to Theorem 5.2 for random variables satisfying either Condition
Bl or Condition B2 follow immediately from Theorem 5.2. The result for Condition
Bl is essentially the same as Theorem 3 of Gaposkin (1972), although he implicitly
assumes that f is nonincreasing. In the case of a sequence of random variables
satisfying both (2.3a) and (2.4a) of Conditions Bl and B2, the almost sure convergence
result for variables satisfying Condition B2 is a more general result than the one
for Condition Bl. This is evident upon examination of the summability conditions
(2.3b) and (2.4b).

In comparing the relative strengths of Gaposkin's result and Theorem 5.2, it is
of interest to examine the case of a stationary Gaussiap time series (Xk} with

E(Xk} =0 and Var(Xk) = 1. By (2.6) it is easily seen that if |R(k)| {s
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nonincreasing, then |E{X X, X, X, } <3 min{R(iz-il),R(ia-i3)}. Gaposkin's result

T =2 3 74
L) ) 2 00,
would then give that 21 ckxk converges almost surely if Zl gL <@ and ZlkR(k) < o,

i

Further examination of (2.6) reveals that this sequence satisfies a combination of
Condition B2 and Condition C. Hence, by Theorem 5.2, Z; ckxk converges almost
surely if Z; ci < © and z; R(k) < ». Thus the restriction placed on the covariance
function R(k) by Gapoékin's result can be relaxed via Theorem 5.2.

A second area of application of moment inequalities concerns rates of
convergence in the central limit theorem for linear rank statistics. Under suitable
assumptions, Jureckovid and Puri (1975) establish- that the rate of convergence

of the cumulative distribution function of the simple linear rank statistic

N R
vi

Jgdi ) eablest

N L PN+l

B »

to the normal distribution function is O w1 Y

) for any 6§ > 0, where C
are known constants, RNl,“",RNN are the ranks of the independent identically
distributed observations XNl’oﬂv’XNN’ and ¢(°) 1is a score generating function.
Their technique of proof consists of two main steps, the first of which is to

establish the following lemma.

LEMMA (Jurnékové and Puri). Assume that the constants CN1,===,CNN satisfy
N N2 R , s
1 CNi 0, 1 CNi =1 and max CNi O(N “logl). Let the first derivative of

1<1igN
¢(t) exist and be bounded in (0,1). Then corresponding to any positive integer

k, where 2k+l <N, there exists a constant B(k) > 0 and a positive integer N

such that for all N > N,

2k}

E((S, - T2} < BOON®,

N
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where T ™ ZT CN1¢(F(X1)) and F is the edf of X, -

The second step is an application of standard results (Lo&ve (1965), p. 288) to
obtain the rate of convergence of the cdf of TN to the normal cdf. These two
results are then combined to yield the desired rate of convergence.

The proof of the above lemma is tedious and hence an alternate method of
proof is desirable. Since {RNi = ¢(F(Xi))} is an exchangeable sequence and
E{(RNi - ¢(F(Xi)))2k} = O(N_k), Theorem 4.9 directly yields the desired bound on
E{(SN-TN)Zk}. Thus the methodology of obtaining this rate of convergence has been
simplified since the proof of Theorem 4.9 is more straightforward than Puri and
Jureckovéd's lemma. Moreover, Theorem 4.9 is more general.

A moment inequality plays a major role in proving a central limit theorem
for sums of functions of mixing random variables. In Gastwirth and Rubin (1975),
a central limit theorem is proved for sums of the form Z; f(xi), where f 1is a

bounded function and {Xi} is a strongly mixing stationary sequence. The following

theorem broadens their result.

THEOREM 5.3. Let {Xi} be a strongly mixing stationary sequence. Suppose

that the mixing numbers of {Xi} satisfy

(5.6) T 4(0: k) < =
k=1
and
ni:; niz nil
(5.7 min{¢(0:3,,3,,32),0(0,3:33,532),4(0,3,,3,33,)} = 0(n)
3,71 1,71 41 4,71, 1°92°73 179293 179393

Then any random variable of the form e X?f(xi), where f 1is a bounded fumetion,

i8 asymptotically normally distributed, that is,

e o




. w v L e

n
(5.9 (s - E{s }I=> N0, o)) ,

where 02 = 1im n-1Var{Sn}.

n+eo
PROOF. Let Y, = f(X,) - E{f(xi)) and let K be a constant such that
|£(x)| s 4K for all real x. With <, = 1, Theorem 4.11 implies that

n &
E{Lzl Yi} } < K4[96(4Tn + n'l,;,n) + 1)4]2:12 %

where % and en are defined by (3.49) and (3.50) respectively. By .7,

en = 0(n) and since L < (z; $(0; k))2 < o, it follows that
(5.7 E((IF Y = 0t .

Furthermore, (5.7, the stationarity of {Yi} and the condition |Yi' < K immediately
imply that

(5.10) E((J] YD) ~h(n) asn>w,

where h(n) = n(E{Yg} + ZZ: E{Yon}). By (5.°) and (5.17).the conditions of the
Blum-Rosenblatt (1956) theorem hold and hence (5.7) follows. 0

The method of proof of Gastwirth and Rubin (1975) has been simplified. Also
Theorem 5.3 slightly relaxes their conditions on the mixing numbers since they

require

Y min{6(0,3:k),6(0:3,k),4(0,k;3)} = 0(n)
jzk 1<j+ksn

along with restrictions (5.¢) and (5.7). Since the conditions of Theorem 5.3 hold
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whenever E; k2¢(0; k) = 0(n), the calculations of Gastwirth and Rubin demonstrate

that the double-exponential, the Gaussian Markov, and the Cauchy processes all

satisfy the conditions of Theorem 5.3. (These processes also satisfy the conditions

of the Gastwirth-Rubin Theorem.)
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